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Abstract
A new and fast way to find local image correspondences for
wide baseline image matching is described. The targeted
application is visual navigation, e.g. of a semi-automatic
wheelchair. Such applications pose some additional re-
quirements, like the need to work with natural landmarks
rather than artificial markers, and the need to recognize lo-
cations fast. The restricted motion of the camera can be
exploited to simplify the feature extraction. These features
should support their identification from different, but nev-
ertheless restricted viewing directions, and under variable
illumination conditions. The paper proposes a specializa-
tion of so-called affine invariant regions for these particu-
lar conditions, which in this case simplifies to column seg-
ments. Their applicability is wider than robot navigation,
and includes localization for wearable computing and scene
recognition for automatic movie indexing.

1 Introduction
Traditionally, visual navigation for mobile robots has been
based on the construction of metric, 3D models of the scene
and the matching of 3D data against this model. An alter-
native, which seems to come closer to human behavior [1],
would be to build a scene model based on images organized
in graph-like structures and to relate one’s position to that at
which the most similar model image(s) have been taken. We
have discussed the automatic construction of such models
elsewhere [2]. Here, we focus on how to match the current
view (during navigation) to the set of model images.

In order to maximize the applicability of the approach,
the use of special markers should be avoided. Our main in-
tended application is automatic wheelchair navigation for
severely disabled people. Covering the walls of people’s
homes with special markers is hardly acceptable. Similarly,
outdoor applications would render the use of such markers
highly impractical. Hence, the goal is to base the localiza-
tion on the recognition of natural landmarks. As the model
cannot be built from images taken from all possible viewing
positions and under all possible illumination conditions, the
recognition of the most similar images should be based on
landmarks that can be extracted irrespective of such varia-

Figure 1: Matching result. Matching column segments are in
white. Black connection lines show corresponding column clus-
ters. White lines show the epipolar geometry found.

tions, i.e. they should be invariant. These features should
also be sufficiently local, so that they are robust against oc-
clusions and scene clutter. Recently, so-called ‘affine invari-
ant regions’ [3] have been proposed as features with these
properties. We propose a more specific type of features,
dedicated to navigation tasks, that are easier to extract and
that allow for fast matching. A preview of the results of our
fast wide baseline matching algorithm is displayed in fig. 1.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work in the field of wide baseline
matching. Section 3 explains the constraints on the camera
and scene that our method presumes. Section 4 describes
the extraction and matching of invariant features. Experi-
ments follow in section 5, while section 6 examines gener-
alizations of the method and gives a birds-eye view on a few
possible applications. We conclude with section 7.



Figure 2: The allowed movements of the camera.

2 Related work
The matching problem that we have to solve, in order to
find the images in the database that are most similar to the
ones taken (repeatedly) by the mobile robot, is one of so-
called wide baseline matching. Being able to match under
such conditions allows one to keep the number of reference
images in the scene model to a minimum.

Most wide baseline matching approaches are based on
so-called invariant regions. These are constructed around
interest points, such as corners, in a way as to adapt their
shapes to the viewpoint and keep the part of the scene they
enclose fixed. These regions are then described by a de-
scriptor vector, the elements of which are invariant under
combinations of geometric and photometric changes. They
can be matched efficiently between views taken from differ-
ent viewpoints and under different illumination. The crux
of the matter is that these affine invariant regions are deter-
mined solely on the basis of a single image, i.e. no informa-
tion about the other view(s) is necessary during extraction.

The differences between approaches lie in the way in
which interest points, local image regions and descriptor
vectors are extracted. An early example is the work of
Schmid and Mohr [4], where geometric invariance was still
under image rotations only. Scaling was handled by us-
ing circular regions of several sizes. Lowe et al. [5] ex-
tended these ideas to real scale-invariance. They have also
achieved recognition at high speeds. More general affine
invariance has been achieved in the work of Baumberg [6],
that uses an iterative scheme and the combination of multi-
ple scales, and in the more direct, constructive methods of
Tuytelaars & Van Gool [3], Matas et al. [7], and Mikola-
jczyk & Schmid [8]. For tasks like navigation, full affine
invariance is often not really required, and the level of ge-
ometric invariance needed lies in between those offered by
the original and the later methods that we have just men-
tioned. Indeed, the camera tends to move in a constrained
way. This is the subject of the next section. As a result,
we will propose a type of feature that shares several prop-
erties with the earlier ones (local, combining geometric and
photometric invariance), but that comes closer to the linear
features introduced by Tell & Carlsson [9]. They look at
line segments between two Harris corners. Fourier coeffi-
cients of the intensity values along the segments serve as
their descriptors. Their method is also quite efficient, but a
caveat is the large number of corner pair combinations that
may have to be considered. Their features have also not

Figure 3: Overview of the algorithm. Top row: off-line process,
bottom row: on-line process.

been designed for the particular conditions we will consider
and do not include color and geometry information.

3 Constraints
As mentioned before, our technique has been developed for
use on a mobile robot. Imagine a robot with a fixed mounted
camera, moving on a horizontal plane. Hence, the cam-
era may (1) translate in the horizontal plane and (2) rotate
around a vertical axis, as shown in fig. 2. We also assume
that the camera is oriented horizontally, with its optical axis
parallel to this plane (although these conditions can be re-
laxed, as discussed later).

Furthermore, we assume that the scene contains several
vertical elements. This is certainly the case for human-made
environments (walls, doors, windows, furniture, etc.), but
also natural scenes tend to contain several such structures
(e.g. trees). These structures don’t have to be planar, so e.g.
cylindrical elements like pillars do comply just the same.

4 Feature extraction and matching
Under the specified constraints, invariant features can be ex-
tracted that are simpler than the affine invariant regions and
therefore can be extracted and matched faster, an important
condition for on-line navigation. Under these constraints, a
vertical line in the world always projects to a vertical line in
the image plane. The image content of this line will only be
scaled around the point where it intersects the horizon.

Fig. 3 gives an overview of the algorithm. In our target
application, like in many other wide baseline applications, a
new image must be matched with one or more prerecorded
reference image(s). That is why we split up the algorithm in
an off-line part and an on-line part, depicted respectively as
the top and bottom row in the figure. While the off-line part
is not time-critical, we try to achieve high-speed execution
of the on-line part, where the localization takes place.

In every image, we first extract invariant column seg-
ments, the local image features we use. Section 4.1 explains
this. For each column segment, a descriptor vector is com-
puted based on geometrical, color and intensity information
(section 4.2). Because of repetitive elements in the image,
the column segments need to be clustered, as discussed in
section 4.3. To speed up the execution, the data of the ref-
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Figure 4: Column segment extraction algorithm: (A) original im-
age, (B) intensity image, (C) gradient magnitude image, (D) local
maxima of the gradient for one pixel column, (E) one pair of max-
ima defines a column segment, (F) expanded segment.

erence image(s) is stored in a Kd-tree, in support of fast
matching (section 4.4). The RANSAC-based outlier rejec-
tion scheme used for filtering is explained in section 4.5.

4.1 Column segment extraction
In this section we describe the affine invariant column seg-
ments that we use as features. As a matter of fact, every
step in their extraction is invariant to the allowable changes
in viewpoint and illumination, where the latter amount to a
scaling and offset. The extraction process is illustrated in
fig. 4. From the intensity image (B) the gradient magnitude
image (C) is computed using the Sobel operator. For every
pixel column in the image we look for points having a lo-
cal maximum gradient value (D). Every consecutive pair of
gradient maxima on a pixel column demarcate a new col-
umn segment (E). A first selection on the column segments
is made by comparing the average gradient value between
the end points and the gradient value of the end points. The
column segment with end points a and b is eliminated if
avg(grad(]a, b[)) > αthmin(grad(a), grad(b)), which is
the case if it contains too much noise. To increase the dis-
criminative power of the descriptor vector, the column seg-
ment is expanded on both sides with a constant fraction of
the segment length. Fig. F shows this.

It is important to see that we do not use edges as features,
as in the work of Schmid and Zisserman [10]. The column
segment features we extract are just vertical columns of pix-
els between two points with large gradient value.

4.2 Descriptor vector calculation
In order to characterize the different invariant column seg-
ments, a total of 11 descriptors are used, which combine
geometrical, color and intensity properties:

- A geometrical invariant: As explained before, column
segments are scaled around the horizon, i.e. the vanish-
ing line of the plane of motion. Because the end points
give two measurements in this 1-parameter transformation,
at least one invariant can be expected. The proof imme-
diately follows from similar triangles, as shown in fig. 5.
Because of the parallelism of the vertical world segment ab
and the image plane segment a′c′, �afc ∼ �a′fc′ and
�bfc ∼ �b′fc′, and therefore ‖a′c′‖

‖b′c′‖ = ‖ac‖
‖bc‖ .
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m’

a’

a

m

b

b’

Figure 5: Illustrating the geometrical invariant. ab is a vertical
element in the world, f is the focal point of the camera and a′b′ is
the projection of ab on the image plane. fc is the optical axis.

As length ratios along the vertical lines are invariant un-
der image projection, we can also use the midpoints of the
segments m and m′, and compare their distances to the hori-
zon with respect to the segment length: ‖m′c′‖

‖a′b′‖ = ‖mc‖
‖ab‖ .

This ratio can be used as the geometric invariant in our
descriptor vector, which is numerically more stable than the
former. If the camera constraints are fully satisfied, the hori-
zon can be found as the horizontal line through the image
center. Section 6 discusses how the horizon can be found
when these constraints do not apply anymore.

- Three color invariants: To include color information
in the descriptor vector, we compute the following color in-
variants, based on ‘generalized color moments’ [11], calcu-
lated over the entire column segment: CRB , CRG and CGB ,
with

CPQ =
∫

PQdx
∫

dx∫
P dx

∫
Qdx

, (1)

where R, G and B represent the red, green and blue chan-
nels, centralized around their means. The inclusion of this
color information, which is invariant to the illumination,
makes the vector more discriminative.

- Seven intensity invariants. To characterize the intensity
profile along the column segment, good features could be
obtained through the Karhunen-Loève transform. But be-
cause all the data is not known beforehand this is not prac-
tical. We have used the discrete cosine transform (DCT)
instead, as it offers a good alternative in such cases and be-
cause it is fast to compute and yields real values. We com-
pute 7 DCT coefficients on the normalized intensity profile
along the column segment. These DCT computations in our
algorithm are executed fast using the 8-point 1D method of
Loeffler et al. [12].

Every step in the extraction of the column segments and
their descriptors is invariant to changes in viewpoint, if
these satisfy the camera motion constraint. In contrast to
the invariant regions that are typically used, these features
also perfectly withstand the effect of perspective projection.
Invariance to scene illumination is also guaranteed if it af-
fects each color band by a scaling and an offset.

For matching and clustering column segments, a dis-
tance measure for the description vectors must be defined.
In our algorithm, we use the Mahalanobis distance r, with
r2 = (X − µ)T CX

−1(X − µ). In this formula µ and CX
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are the mean and intra-group correlation matrix of X, which
contains the descriptor vectors. We measured the real intra-
group CX on single-group training images, rather than us-
ing the overall correlation.

4.3 Intra-image Clustering
In many cases there is horizontal repetition of similar col-
umn segments in the scene, originating from horizontally
constant elements. An example is the rightmost garage gate
of the house in fig. 1. To avoid matching over and over again
very similar column segments during the on-line naviga-
tion stage, on both the reference image and the query image
clustering of the column segments is performed first. This
clustering can be implemented very efficiently, because the
column segments are already sorted by their order of ex-
traction. As clustering measure we use the Mahalanobis
distance of the descriptor vectors, together with the hori-
zontal distance between the line segments. Each cluster is
represented by a prototype column segment, with the av-
erage descriptor vector and centered in the middle of the
cluster.

4.4 Matching
The goal of the on-line segment matching is to quickly find
corresponding column segments between two (or more) im-
ages. Here, we define ’corresponding’ as having a Maha-
lanobis distance between the descriptor vectors smaller than
a fixed threshold. To avoid having to compare each col-
umn segment of one image with each column segment in
the other image, a Kd-tree of the reference image data is
built of the cluster prototypes. We used the on-line avail-
able package ANN by Mount et al. [13] for this. Searching
in this kind of database is very fast. Also, the database can
contain data of more than one reference image, so we can
match one image in parallel with several images.

4.5 Rejecting false matches
Apart from the classic causes of mismatches like image
noise or geometric and photometric changes beyond the
allowable range, repetitions are another source of mis-
matches. These are quite frequent in the type of archi-
tectural scenes we work with. In the schematic example
of fig. 3, each window would match any similar window.
An additional rejection of such mismatches is needed. We
apply RANSAC to impose compliance with the dominant
epipolar geometry [14].

But, because of our camera motion constraint, the F-
matrix has fewer degrees of freedom than in the general
case, as 2 of its elements are always zero. Indeed, because

E = [t]×R =

[
0 −Z1 0
Z1 0 −X1

0 X1 0

][
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

]

(2)we see that, for a CCD camera (i.e. no skew),

Figure 6: Viewpoint invariance. Number of matches between un-
rotated view (0◦) and image taken after rotation with different hor-
izontal angles.

F = K−T EK−1 =

[
0 f12 f13

f21 0 f23

f31 f32 f33

]
. (3)

Therefore, we developed an adapted F-matrix estimation
which takes these constraints into account, and used that
within RANSAC. With a random sample of six points, the
F-matrix can be computed. Also, because the result is re-
stricted, the outcome is more probable to be correct.

5 Experimental results
5.1 Matching and recognition experiments
We have analyzed the computation times of the different
parts of the algorithm for the example in fig. 1. It contains
two 640×480 color images of the same scene. In the ref-
erence image (above) 1871 column segments were found,
and clustered into 1292 prototypes. In the second image the
1706 column segments found were clustered into 995 pro-
totypes. Before RANSAC filtering, 161 matches between
prototypes were found for these two images, after filtering
141 remained, of which only 6 are wrong. The algorithm
has been implemented in C++ and currently runs on a 1GHz
machine. Although not yet optimized using features such as
MMX, the total on-line execution time was as low as 0.966s
in this case, and these times are typical.

Fig. 6 illustrates the viewpoint invariance. This small
experiment gives a feel for the survival of features under
increasing rotation about the vertical axis. Even at 40◦ there
are still more than 100 matching clusters.

The previous example was based on the matching of
a pair of images, that were known to contain correspon-
dences. In reality, an incoming query image will have to be
matched against several reference images of the site model,
even if the number can often be reduced based on context
information. Therefore, we have tested the algorithm on the
ZuBuD database, containing 1005 images of buildings in
Zürich [15]. It should be noted that these images have not
been taken with our camera motion constraint in mind. This
already hints at the rather wide applicability of the approach
in practice. An example of two matched ZuBuD images is
given in fig. 7, top right.

In this case all reference images are processed off-line
and put together in a large Kd-tree database, which took
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Figure 7: Left: Matching results on the Valbonne image pair (im-
age numbers 9 and 13), 208 matches are found. Right: Example
matching of two images: ZuBuD (top), Fawlty Towers (bottom).

only about 4 minutes of computation time. The 115 query
images were taken from different viewpoints and under dif-
ferent weather conditions than the database images. The
average total recognition time was 1074ms, with a standard
deviation of 280ms. For 92% of the query images the re-
trieval was correct, which is 6% better and about three times
faster than the results reported by Shao et al. [16].

We tested the speed of different wide baseline matching
techniques to compare with our method. Fig. 8 shows the
average execution times of the feature extraction and de-
scriptor calculation stage on a 1 GHz machine on 640×480
color images. We see that our method is more than ten times
faster than our closest competitor.

Comparing matching quality over different approaches
is not straightforward. On one image pair, one can count
the number of matches found with different techniques and
compare these numbers. But this comparison lacks infor-
mation about the accuracy of the matches, the size and
shape of the matching regions, the number of extracted re-
gions, the scene contents and constraints on the set-up. That

Figure 8: Average computation time (seconds) needed for fea-
ture extraction and descriptor calculation for 640×480 color im-
ages with different methods on 1GHz PC. From left to right, the
methods of: Schmid [8], Baumberg [6], Matas [7], Tuytelaars [3],
Lowe [5], and the method of the paper.

Figure 9: Robustness to rotation around optical axis (left) and
vertical rotations (right). Number of matches between unrotated
view (0◦) and view from different rotation angles.

is why we present the matching results on a Valbonne im-
age pair. These images are widely used by other researchers
to demonstrate wide baseline matching results, so can give
a visual indication of the relative matching quality. On this
pair of images, we found 208 column segment matches, dis-
played left in fig. 7. On the very same image pair, Tell [17]
reports 127 point matches and Mikolajczyk & Schmid [8]
found 22 region matches.

5.2 Robustness to constraint violations
In theory, this wide baseline matching technique is only
valid if the camera motion constraints are satisfied and if
the scene elements are vertical. In some applications these
preconditions can be met precisely, like e.g. in indoor mo-
bile robot navigation. But other applications, like vision in
a wearable computing context, will fullfill these conditions
only approximately. Fortunately, the proposed technique is
also usable in such conditions, as is corroborated by the ex-
periments in this section. As a matter of fact, this is already
suggested by the additional matches that are found on the
slanted roof of fig. 1.

To examine allowable camera position constraint viola-
tions, we did several tests. In fig. 9, left, the result of ro-
tations around the optical axis is shown. We see that, due
to the horizontal width of some scene elements the number
of matches stays reasonably high, even at a relatively large
rotation. If the rotation is too large, the height of the column
segments near the side of the image deviates too much from
the actual value.

In fig. 9, right, the effect of vertical rotation (like if the
camera is nodding ’yes’) is shown. We see (dark bars) that
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the number of matches rapidly decreases with increasing
angle. That is because the geometrical invariant uses the
distance of the column segments to the center line of the
image. If the camera rotates vertically, this center line is not
equivalent to the horizon anymore.

6 Generalizations and applications
In order to use this system in applications only approxi-
mately satisfying the camera motion constraint, some so-
lutions can be worked out. We can drop the geometric de-
scriptor from the feature vector, which results in the light
bars on the left of fig. 9. Unfortunately, as then also its dis-
criminative power decreases, we find slightly less matches.
In other applications, it will be possible to mount the camera
in a way that it levels itself using gravity.

The approach can be easily generalized toward more
general camera motions. As long as the horizon line of the
planar motion can be detected as well as the vanishing point
of parallel column segments in the scene, the resulting im-
ages can be transformed into the kind needed here. A pro-
jective transformation can be applied to move the segment
line intersection to infinity and to put the horizon as a hor-
izontal line through the center. This means that the camera
need not really be positioned horizontally on the robot in
such case, for instance. An approach to find the horizon
and the vertical vanishing point – which is fully compatible
with wearable computing systems – would be to add a tilt
sensor. A popular example of wearable computing is a vir-
tual tourist guide that provides location-based information.
The alternative, an image-based horizon detection based on
vanishing point detection, has been discarded in our imple-
mentation because of the high computational load and the
extra scene constraints needed.

Moreover, although these constraints seem quite limit-
ing, a strikingly large portion of everyday imagery obeys
the constraints right away, or at least comes very close. To
corroborate this, we analyzed two TV productions, Flikken
and Fawlty Towers, and found 95.1% and 98.9%, resp., of
the keyframes to satisfy the camera motion constraint. Fig-
ure 7, bottom right, illustrates this. Hence, the proposed
techniques also provide a means to detect similar locations
in such media productions, as part of a multimedia indexing
system.

7 Conclusion
We have presented a wide baseline matching algorithm
which is based on novel, local features and constraints that
are put on the allowable camera motion. This and the use
of efficient database indexing, result in an algorithm that is
suited for quasi-real time applications like visual localiza-
tion. The speed is more than ten times faster than the clos-
est competing algorithm for the moment, and further code
optimizations are possible.
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