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Abstract— Omnidirectional vision sensors are very attractive
for autonomous robots because they offer a rich source of
environment information. The main challenge in using these
for mobile robots is managing this wealth of information. A
relatively recent approach is the use of fast wide baselineotal
features, which we developed and use in the novel sparse vidu
path following method described in this paper.

These local features have the great advantage that they can
be recognized even if the viewpoint differs significantly. his
opens the door to a memory efficient description of a path by
sparsely sampling it with images. We propose a method for re-
execution of these paths by a series of visual homing operatis.
Motion estimation is done by simultaneously tracking the seof
features, with recovery of lost features by backprojectingthem
from a local sparse 3D feature map. This yields a navigation
method with unique properties: it is accurate, robust, fast and
without odometry error build-up. Fig. 1. Top: example of a topological map. Bottom: a sparseali path,

described by image8 — 4 — 5 — 9 — 10 — 11.

. INTRODUCTION crossroads and edges are paths, each path characterized by

In the broader scope of our research on vision-only robo® Séquence of images (e.g. fig. 1). When the patient in the
navigation in natural and complex environments, this papef/n€elchair communicates a certain goal place to drive to,
focuses on the algorithm we developed famarse visual the. wheelcha|r. first Iogallz_es itself in the tqpolo_glcal map
path following. In a previous step, a topological environment(USing @ Bayesian localization scheme described in [2igr af
map is automatically built [1], [2]. This map representsWh'Ch the path towgrds that goal.ls translated in a sequence
the environment as a graph with as nodes omnidirectionglf map images. This paper describes the way the wheelchair
images, each taken at a different place and as edges df Steered along this sparse visual path.
rect transversable connections between places. This paperN€ remainder of this paper is organized as follows.
presents a method for the re-execution of a path that iSection Il situates this paper between related work. In@ect
defined as a sequence of connected images. Fig. 1 illustraty an overview of the proposed algorithm is presented. The
this. main two phases of each visual homing step of this algorithm

The most obvious approach to achieve this is a serigs of are described in sections IV and V. Section VI details the
sual homing operations. First, the robot is steered towards th&Xperiments we have performed and section VIl draws a
place where the first of the path images is taken. From ther&onclusion.
the next path image is aimed at, and so forth. Each of these
elementary visual homing operations consists of steering a
mobile robot from an arbitrary place in the neighborhood The essence of our method is a new approach to visual
towards a place that is defined by an image taken there. In olnoming. Homing is a term borrowed from biology, where
approach, we work with path images that are taken relativelit is usually used to describe the ability of various living
far from each other §parse’). That greatly diminishes the organisms, such as insects, to return to their nest or to a
required memory space to describe a certain path. food source after having traveled a long distance. Many

The application we envision for our method is a real-researchers have tried to imitate this behavior in mobile
time automatic wheelchair [1] for indoor and outdoor use.robots. Because of the complexity that working with images
During a training phase, all places are visited while retgyd brings along, there have been many efforts to solve the
omnidirectional images. Off-line, automatically a topgilcal ~ navigation problem using non-visual sensors [3]. Vision is
map is built from these sparse images, wherein nodes are comparison with other sensors, much more informative.

Il. RELATED WORK



We observe that many biological species, in particular §fyin in the work of Baumberg [13] and Mikolajczyk & Schmid
animals, use mainly their visual sensors for localizatiod a [14], that uses an iterative scheme and the combination of
homing. Moreover, we see that the majority of insects andnultiple scales, and in the more direct, constructive mgsho
arthropods benefit from a wide field of view, which sustainsof Tuytelaars & Van Gool [15], [16], and Mateat al. [17].

our omnidirectional camera choice. Although these methods are capable to find good correspon-
dences, most of them are too slow for use in a mobile robot

A Bearln.g-onlywsual homing algorithm. That is why we spent efforts to speed this up, as
Cartwright and Collett [4] proposed the so-called 'snap-gxplained in section IV-A.

shot’ model. They suggest that insects fix the locations of
landmarks surrounding a position by storing a snapshotémagC- Mapless, sparse maps, dense maps
of the landmarks taken from that position. Their proposed Ego-motion calculation is part of the problem presented.
algorithm consists of the construction of a home vectorBoth methods based on dense 3D maps (e.g. [18], [19]) and
computed as the average of landmark displacement vectoniap-less appearance-based methods (e.g. [20]) are ptbpose
Franzet al. [5] analyzed the computational foundations of Methods onsparse maps, like ours, are situated between
this method and derived its error and convergence progertiethese two extremes and combine the avantages of both.
They conclude that every visual homing method based solelpavison [21], for instance, developed a single projective
on bearing (azimuth) angles of landmarks, inevitably delsen camera SLAM method which estimates the ego-motion of
on basic assumptions such as equal landmark distancehe camera by building sparse probabilistic 3D maps with
isotropic landmark distribution or the availability of am-e natural features.
ternal compass reference. For instance, the snapshal-base _ .
method developed by Argyrce al. [6] silently assumes an D- EPipolar geometry
isotropic landmark distribution. Unfortunately, becamsame For visual homing, the most obvious choice is working via
of these assumptions generally hold in our targeted applic@pipolar geometry estimation (e.g. [16], [22]). Unforttelg,
tion we search for an alternative approach. Moreover, thes@ many cases this problem is ill conditioned. A workaround
methods return no information about home distance, whicifor planar scenes is presented by Sagiés [23], who opted
is necessary information for a mobile robot to determine thdor the estimation of homographies. Svoboda [24] proved
appropriate speed and to be able to stop safely at the honflegat motion estimation with omnidirectional images is much
position if needed. better conditioned compared to perspective cameras. $hat i
why we chose a method based on omnidirectional epipolar
B. Msual landmarks geometry. Other work in this field is the research of Manotti
Crucial in all visual homing methods is the selection ofet al. [25], who split the homing procedure in a rotation
the landmarks, to find corresponding pixels between th@hase and a translation phase, which can not be used in our
present image and the target image. Techniques based @pplication because of the non-smooth robot motion.
optical flow [5], [7], [8] are used for this, although they .
are only suitable for small-baseline egomotion estimationE- Previous work
Other authors use artificial landmarks, like LEDs [9] or 2D In previous work [26], we developed a non-calibrated
barcodes [10]. For many applications, like ours, the use obmnidirectional homing method based on Extended Kalman
artificial landmarks is out of the question because of itgFilters. Visual features are found by wide baseline magghin
serious practical disadvantages. That is why we propose t@nd tracked throughout the sequence with a KLT tracker.
use natural landmarks, found using the technique décal During tracking, the 2D position of each feature, and also
region matching. Instead of looking at the image as a whole,the present and target robot positions, are iteratively-com
local regions are defined around interest points in the imageputed by means of an EKF. Although our tests proved
The characterization of these local regions with descriptoquite successfull, this method shows two main disadvastage
vectors enables the regions to be compared across imagé&ststly, during tracking, inevitably features are lost dioe
Because of the built-in invariance against photometric andracking errors and occlusions. This results in a decrgasin
geometric changes, correspondences can be found betweggcuracy or even totally wrong motion towards the end of
images with different lighting and different viewpoints. a homing operation. Another disavantage is the sensitivity
Many researchers proposed algorithms for local regiomf the Kalman filter to deviations in the initial state and the
matching. The differences between approaches lie in the wayotion model. Moreover, an important amount of data is not
in which interest points, local image regions, and desgript used, because only bearing data is used and only 2D, not 3D
vectors are extracted. An early example is the work of Schmidnhaps are built.
and Mohr [11], where geometric invariance was still under Our new approach, presented in this paper, avoids these
image rotations only. Lowe [12] extended these ideas t@scal problems. Based on epipolar geometry calculations using
invariance. More general affine invariance has been acdtievea calibrated omnidirectional camera, 3D feature maps are



can be stopped at a position close to the position where the

- last path image was taken.
. IV. INITIALIZATION PHASE
Recovering

Matching Lost Features From each position within the reach of a target image, a
— V|suallhom|ng procedqre can be started. Our approach first

Extracion establishes wide baseline local feature correspondefbas.
Robot information is used to compute the epipolar geometry, which

Motion enables us to construct a local map containing the feature

world positions, and to compute the initial homing vector.

' -%argeilmag/ First 1mage

Wide Baseline Wide Baseline
Feature Extraction Feature Extraction

Distance
small enough?

Next Path Image

A. Wide baseline feature correspondences

| Initialization Phase .| Tracking Phase N Although wide baseline local features are common in
computer vision, only recently, a class fakt wide baseline
Fig. 2. Flowchart of the proposed algorithm. local features have appeared. We use the combination of two

different kinds of these features, namely a rotation reduce
and color enhanced form of LoweSFT features [12], and
built. This enables backprojection of features in the imagehe invariant column segments we developed [27].
to recover features that are lost during tracking. Another 1) Rotation reduced and color enhanced SIFT: David
advantage is that the motion is not restricted to a plane. Lowe presented th&cale Invariant Feature Transform [12],
which finds interest points around local peaks in a series of
[1l. ALGORITHM OVERVIEW difference-of-Gaussian (DoG) images. A dominant gradient

o ] _orientation and scale factor define an image patch around
The aim is for a mobile robot to re-execute a path that i 5ch interest point so that a local image descriptor can

defined by omnidirectional images taken sparsely, say 110 8¢ found as a histogram of the gradient directions of the
metres from each other in a typical indoor environment along, 5 - malized image patch around the interest point. SIFT
that path. As sketched in fig. 1, following such a sparse Visuggatyres are invariant to rotation and scaling, and rokwist t

path boils down to a successionwéual homing operations.  iher transformations.

One of the advantages of this approach is the fact that no a requced form of these SIFT features for use on mobile
position errors bu_ild up during navigatiqr_m Each time_ thergpots is proposed by Ledwich and Williams [28]. They used
movement is relative to a new image position and previouslyhe fact that rotational invariance is not needed for a camer
made mapping and localization errors become irrelevant. - fivaq on a mobile robot moving in a plane. Elimination of the

Fig. 2 offers an overview of the proposed method. Eachotational normalization and rotational part of the desori
of the visual homing operations is performed in two phases, yields a somewhat less complex feature extraction and more
an initialization phase and an iterated tracking phase. robust feature matching performance.

First, the image taken at the present pose is compared with Because the original SIFT algorithm works on grayscale
the next path image (the target image). Local feature corrgmages, some mismatches occur at similar objects in differe
spondences between these two images permit calculation eblors. That is why we propose an outlier filtering stage Base
the epipolar geometry between these images. From that, thg, a color descriptor of the feature patch based on global
homing vector required to move from the present to the targeiolor moments, introduced by Mindiet al. [29]. We chose
location, and the 3D positions of the features are computedhree color descriptors?r s, Cre and Cg s, with
Th_:_shlmtlahzatlon phase |§ descrlped !n secthn IV_. [XYdQ [d9

en, the robot is put into motion in the direction of the Cxy = %——mr—— |

homing vector and an image sequence is recorded. In each JXdQ [YdQ
new incoming image the visual features are tracked. Robusivhere X, Y € {R, G, B}, i.e. the red, green, and blue color
ness to tracking errors (caused by e.g. occlusions) isa@thie bands, centralized around their means. After matching, the
by reprojecting lost features from their 3D positions batk i correspondences with Euclidean distance between the color
the image. These tracking results enable the calculation afescription vectors above a fixed threshold are discarded.
the present location and from that the homing vector towards Between the image pair in fig. 3 the original SIFT algo-
which the robot is steered. The tracking phase is detailed irithm finds 13 correct matches. Using this rotation reduced
section V. and color enhanced algorithm, the matching threshold can be

When the (relative) distance to the target is small enoughraised so that up to 25 correct matches are found without
the entire homing procedure is repeated with the next imagmcluding erroneous ones. These numbers, although very
on the sparse visual path as target. If the path ends, the robdependent on the complexity of the scene, are typical.

1)



Fig. 4. Projection model for a pair of omnidirectional image

Fig. 3. A pair of 320 x 240 omnidirectional images, superimposed with
color-coded corresponding column segments (radial lined)SIFT features ) ) ) ) )
(circles with tail). essential matrix. Because our tests with this method did

not yield satisfactory results, we implemented an altévaat

2) Invarian_t column gegments: In earlier work [2.7]’ W€ " method based on the well-known Random Sample Consensus
developed wide baseline features which are spemallyd;une(RANSAC [32]) paradigm.

for mobile robot navigation. Taking advantage of the move- The set-up is sketched in fig. 4. One visual feature with

ment constraints of a fixed camera on a rob(_)t mo‘(‘”g _in vorld coordinatesX is projected via pointu on the first
plane (although [27] shows robustness to minor V|olat|onsmirror to pointp in the image plane of the first camera. In

of this constraint), a very simple and_ fast algorithm can t_’aihe second camera, the mirror point is callednd the image
carried out. The (dewarped) image is scanned columnwisg e hointg. For each of the correspondences, the mirror
and column segment features are defined between two loc

) . . E‘ intsu andv can be computed as
maxima of the image gradient. Each column segment i
described by an 11-element vector containing geometrical, u=F(K 'p)K~'p+tc, (2)
color and intensity information. . T
Fig. 3 shows the matching results on a pair of omni-Wlth to = [0,0,~2¢]" and
directional images. As seen in these examples, the SIFT
features and the column segments are complementary, which

pleads for the combined use of the two. The computing t'm?n these equationg is the internal matrix of the camera,

;ecgjuwed to ex(tjract fezal)tu:\izls n EIAKQO.X 2;10 |tn;3%%es arfld thand a, b ande are the parameters of the hyperbolic mirror,
ind correspondences between them is abou ms for e o — /a2 1 52

enlhanced SIFtheaturezoaons/lHonlly ?;OO ”_‘rs f_or Jh%g?rtgg If E is the essential matrix, for all correspondences
column segments (on a z laptop). Typically 098" Bu = 0. This yields for each correspondence pair one

correspondences are found. linear equation in the coefficients & = [e;;]. The essential

. Because_ only the 'OC?" featur_es are used and not _th_e V€[¥atrix can be computed as the solution of the homogeneous
pixel data itself, a path is described very memory efficientl

o Per+ alx))
(x) = b2x? — a?z% — a?a3’

®3)

. system
by solely the local feature data of the sparse path images. 4 Ae =0 (4)
B. Epipolar geometry estimation with e = [e11, €12, €13, €21, . . . , e33] and the rows ofd equal
Our single-viewpoint omnidirectional camera is composedo a; = [v;1ui1, Vi1 Uiz, Vilu i3, - - - Vi3]

of a hyperbolic mirror and a perspective camera. As imaging For each random sample of 8 correspondences,Ean
model, we use the model proposed by Svoboda and Panatrix can be calculated. This is repeatedly done and fdr eac
jdla [24] (which is less general, but less complicated thant matrix candidate the inliers are counted. A correspondence
the one by Geyer and Daniilidis [30]). This enables theis regarded an inlier if the second image paiplies within
computation of the epipolar geometry based on 8 point cora predefined distance from the epipo#iipse, defined by
respondences. In [31], Svoboda describes a way to robustthie first image point. This epipolar ellipsés with equation
estimate theessential matrix £, when there are outliers in x” Bx = 0 is computed as

the c.orres'pondence set. Their so-cal@ierate-and-select . 42026 4 r2pt rsb? rth?(—2¢% + b?)
algorithm is based on repeatedly solving an overdetermineg _ b _42a%¢* + 5260 sth?(—26% 4+ b7)
system built from the correspondences that have a low rtb?(—2e% +b2)  stb*(—2€2 + b?) £2p1

outlierness and evaluating thgquality measure of the resulting (5)



with [r,s,t] = Bu = E(F(K 'p)K'p+tc¢). Fortunately, basic principle of KLT is that the definition of corners to be
this ellipse becomes a circle when the motion is in one plandracked is exactly the one that guarantees optimal tracking
so that the distance from a point to this shape is easy tA point is selected if the matrix
compute.
From the essential matri¥) with the maximal number [ 92 9=y } ©6)
of inliers the motion between the cameras can be computed 929y 95 ’
using the SVD based method proposed by Hartley [33]. If
more than oneZ-matrix is found with the same maximum Ccontaining the partial derivativeg, and g, of the image

number of inliers, the one is chosen with the smallest gualit iNtensity function over anV x N neighborhood, has large
measurejr = o1 — 0», Whereo; is theith singular value of eigenvalues. Tracking is then based on a Newton-Raphson

the matrix E. style minimization procedure using a purely translational
o model. This algorithm works surprisingly fast: we were able
C. Local feature map estimation to track 100 feature points at 10 frames per second in

In order to start up the succession of tracking iterations320 x 240 images on a 800 MHz laptop.
an estimate of the local map must be made. In our approach Because the well trackable points are not necessarily
the local feature map contains the 3D world positions of theoinciding with the center points of the wide baseline feagu
visual features, centered at the starting position of tiseali to be tracked, the best trackable point in a small window
homing operation. These 3D positions are easily computedround such a center point is selected. In the assumption of
by triangulation. local planarity we can always find back the corresponding
It may arouse suspicion that we only use two images, theoint in the target image via the relative reference system
first and the target image, for this triangulation. This hasoffered by the wide baseline feature.
two reasons. Firstly, these two have the widest baseline and
therefore triangulation is best _conditioned. Our wide base B, Recovering lost features
matches between these two images are also more plentiful
and less influenced by noise than the tracked features. The main advantage of working with this calibrated system
is that we can recover features that were lost during trackin
This avoids the problem of losing all features by the end of
When estimates of the homing vector and local map arghe homing maneuver, a weakness of our previous approach
found, the robot is put into motion in the direction of that 2.
homing vector. We rely on a lower-level collision detection |, the initialization phase, all features are described by

and obstacle avoidance algorithm to do this safely [34]5p jntensity histogram, so that they can be recognized after

During this drive, images are taken giving information 10 hejng |ost during tracking. Each time a feature is succélgsfu
update the location of the robot. When close enough to ong,cked this histogram is updated.

target, the movement towards the next target image is dtarte When tracking, some features are lost due to temporal

This yields a smooth trajectory along a sparsely de‘cmeﬂwvisibility because of e.g. occlusion. Because our locapm

visual path. contains the 3D positions of each feature, and the last robot
A. Feature tracking position in that map is known, we can reproject the 3D feature
iél the image. Svoboda shows that the world p&Xnt (i.e. the
BointX expressed in the camera reference frame) is projected
on pointp in the image:

V. TRACKING PHASE

The corresponding features found between the first imag
and the target image in the previous step, also have t
be found in the incoming images during driving. This can
be done very reliably performing every time wide baseline K
matching with the first or target image, or both. Although p= %(/\Xc —to), (7)
recent methods are relatively fast (abduts for a pair of
640 x 480 images, see [27]), this is still too time-consumingwherein ) is the largest solution of
for a driving robot.

Because the incoming images are part of a smooth con- 5= b?(—e)X ey £ al| X
tinuous sequence, a better solutiortriacking. In the image a b2Xc§ _ a2Xc% _ a2XC§'
sequence, visual features move only a little from one image
to the next, which enables to find the new feature position in Based on the histogram descriptor, all trackable features
a small search space. in a window around the reprojected poimtare compared to

A widely used tracker is the KLT tracker of Kanade, Lucas,the original feature. When the histogram distance is under a
Shi, and Tomasi [35]. KLT starts by identifying interestipisi  fixed threshold, the feature is found back and tracked farthe
(corners), which then are tracked in a series of images. Thia the next steps.
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C. Motion computation

When in a new image the feature positions are compute. .
by tracking or backprojection, the camera position (and thu.| .
the robot position) in the general coordinate system can b N
found based on these measurements. %

It is shown that the position of a camera can be compute., sy
when for three points the 3D positions and the image o -
coordinates are known. This problem is know as three z'ig-hf)- WT?"yg?a‘r’]'c“éc[‘%” ?rr:grg[glﬂ|g§2t)ibﬁr}?e20ar?ic%$mn error [rad]
point perspective pose estimation problem. An overview of '
the proposed algorithms to solve it is given by [36]. We chose o — ~ \
the method of Grunert, and adapted it for our omnidirectiona
case. The required input data, unit vectors pointing from e e
the center of perspectivity to the observed points, is yasil
computed by normalizing the corresponding mirror powts

Also in this part of the algorithm we use RANSAC to ] e
obtain a robust estimation of the camera position. Repsated 1
the inliers belonging to the motion computed on a three4{poin s
sample are counted, and the motion with the greatest number v
of inliers is kept. Fig. 6. Homing vectors from 1-meter-grid positions.
D. Robot motion B. Initialization phase

In subsection IV-B is explained how the position and During the initialization phase of one visual homing step,
orientation of the target can be extracted from the computedorrespondences between the present and target images are
epipolar geometry. Together with the present pose restilts dound and the epipolar geometry is computed. This is shown
the last subsection, a homing vector can easily be computejh fig. 7.

This command is communicated to the locomotion subsys- We tested thouroughly the accuracy of the homing vector
tem. When the homing is towards the last image in a pathgomputed from the epipolar geometry. Fig. VI-B plots the
also the relative distance and the target orientation.wtiet  angle error of the homing direction and the home orientation
present orientation is given, so that the locomotion suesys for different distances between first and target positioe. W
can steer the robot to a halt at the desired position. This isee that the error decreases with decreasing distance to the
needed for e.g. docking at a table. goal. However, when the baseline becomes too small, the
error goes up again due to ill-conditioning.

) o ) ) For an other experiment, we took images with the robot
A path was defined by four omnidirectional images takerbositioned at a grid with a cell size of one meter. The

at places about 2 metres apart along the path. From a startingsting home vectors towards one of these images (taken at
position in the neighborhood of the first image, the visualg 3y are shown in fig. 6. This proves the fact that even if the
path following algorithm was executed. images are situated more than 6 metres apart the algorithm

Typical results of one visual homing step of our algo-\yqrks thanks to the use ofide baseline correspondences.
rithm are presented in fig. 7 and 8. We prepared a demo

video about this experiment which is downloadable viaC. Tracking phase

http://ww. esat . kul euven. be/ ~t goedene. We present a typical experiment in fig. 8. During the

A. Test platform motion, the top of the camera system was tracked in a video

i ] ) sequence from a fixed camera. This video sequence, along

We have mplemgn&ed the p,r,opoged algorithm, using OU;ith the homography computed from some images taken

modified wheelchair "Sharioto™. It is a standard electric\yith reference positions, permits calculation of metricddot

wheelchair that has been equipped with an omnldlrecnon?round truth data.

vision sensor (consisting of a Sony firewire color camera an Repeated similar experiments showed an average homing

a hyperbolic mirror). The image processing is performed Oyccuracy of 11 cm, with a standard deviation of 5 cm.
a 1 GHz laptop. As additional sensors for obstacle detection

16 ultrasound sensors and a Lidar are added. A second lapt&p Timing

with a 840 MHz processor reads these sensors, receivesThe algorithm runs surprisingly fast on the rather slow
visual homing vector commands, computes the necessahardware we used: the initialization for a new target lasts
manoeuvres, and drives the motors via a CAN-bus. Morenly 958 ms, while afterwards every 387 ms a new homing
information can also be found in [37] and [34]. vector is computed.

VI. EXPERIMENTAL RESULTS



Fig. 7.
correspondences and epipolar geometry are shown.

VIl. CONCLUSION

Results of the initialization phase. Top row: targetdttom row: start. From left to right, the robot positionmoidirectional image, visual

[6] A. Argyros, K. Bekris, and S. Orphanoudakis, "Robot Homibased
on Corner Tracking in a Sequence of Panoramic Images”, Ctanpu

In this work, we developed a novel approach to visual path  vision and Pattern Recognition, vol. 2, p. 3, Kauai, Hawap1.
following as a series of visual homing operations on patt7] J. Gluckman and S. Nayar, "Ego-Motion and Omnidirecib6ameras,”

images. Image correspondences are found using advanc
fast wide baseline feature matching techniques, which cal
cope with big viewpoint differences. This permits the use

Proceedings of ICCV, p. 999, Bombay, 1998.

@F R. Vassallo, J. Santos-Victor, H. Schneebeli, "A Gehekpproach
for Egomotion Estimation with Omnidirectional Images,” ®IWI1S'02
Workshop on Omni-directional Vision, Copenhagen, 2002.

of only a few path images, which leads to the concept of 2£9] D. Aliaga, "Accurate catadioptric calibration for reéine pose estima-

memory efficient sparse visual path.

tion in room-size environments,” in Proc. |IEEE Int. Conf. mjuter
Vision (ICCV), Vancouver, pp. 127-134, 2001.

Based on robustly estimated omnidirectional epipolar gefl0] J. Rekimoto and Y. Ayatsuka, "CyberCode: Designing fuegited

ometry a local 3D map of the environment is built, which
holds only the feature world coordinates (a sparse 3D map
This enables the recovery of features which are lost during

Reality Environments with Visual Tags,” Proc. of DARE, 2000

511] C. Schmid, R. Mohr, C. Bauckhage, "Local Grey-valuedriants for

- Image Retrieval,” International Journal on Pattern Anialys Machine
Intelligence, Vol. 19, no. 5, pp. 872-877, 1997.

tracking by backprojecting them in the image. In this sensél2] D. Lowe, "Object Recognition from Local Scale-InvartaFeatures,”

an occlusion-robust feature tracker is built.

Our experiments show the feasibility and robustness of this

approach.
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