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Abstract— Omnidirectional vision sensors are very attractive
for autonomous robots because they offer a rich source of
environment information. The main challenge in using these
for mobile robots is managing this wealth of information. A
relatively recent approach is the use of fast wide baseline local
features, which we developed and use in the novel sparse visual
path following method described in this paper.

These local features have the great advantage that they can
be recognized even if the viewpoint differs significantly. This
opens the door to a memory efficient description of a path by
sparsely sampling it with images. We propose a method for re-
execution of these paths by a series of visual homing operations.
Motion estimation is done by simultaneously tracking the set of
features, with recovery of lost features by backprojectingthem
from a local sparse 3D feature map. This yields a navigation
method with unique properties: it is accurate, robust, fast, and
without odometry error build-up.

I. I NTRODUCTION

In the broader scope of our research on vision-only robot
navigation in natural and complex environments, this paper
focuses on the algorithm we developed forsparse visual
path following. In a previous step, a topological environment
map is automatically built [1], [2]. This map represents
the environment as a graph with as nodes omnidirectional
images, each taken at a different place and as edges di-
rect transversable connections between places. This paper
presents a method for the re-execution of a path that is
defined as a sequence of connected images. Fig. 1 illustrates
this.

The most obvious approach to achieve this is a series ofvi-
sual homing operations. First, the robot is steered towards the
place where the first of the path images is taken. From there,
the next path image is aimed at, and so forth. Each of these
elementary visual homing operations consists of steering a
mobile robot from an arbitrary place in the neighborhood
towards a place that is defined by an image taken there. In our
approach, we work with path images that are taken relatively
far from each other (’sparse’). That greatly diminishes the
required memory space to describe a certain path.

The application we envision for our method is a real-
time automatic wheelchair [1] for indoor and outdoor use.
During a training phase, all places are visited while recording
omnidirectional images. Off-line, automatically a topological
map is built from these sparse images, wherein nodes are

Fig. 1. Top: example of a topological map. Bottom: a sparse visual path,
described by images3 → 4 → 5 → 9 → 10 → 11.

crossroads and edges are paths, each path characterized by
a sequence of images (e.g. fig. 1). When the patient in the
wheelchair communicates a certain goal place to drive to,
the wheelchair first localizes itself in the topological map
(using a Bayesian localization scheme described in [2]), after
which the path towards that goal is translated in a sequence
of map images. This paper describes the way the wheelchair
is steered along this sparse visual path.

The remainder of this paper is organized as follows.
Section II situates this paper between related work. In section
III, an overview of the proposed algorithm is presented. The
main two phases of each visual homing step of this algorithm
are described in sections IV and V. Section VI details the
experiments we have performed and section VII draws a
conclusion.

II. RELATED WORK

The essence of our method is a new approach to visual
homing. Homing is a term borrowed from biology, where
it is usually used to describe the ability of various living
organisms, such as insects, to return to their nest or to a
food source after having traveled a long distance. Many
researchers have tried to imitate this behavior in mobile
robots. Because of the complexity that working with images
brings along, there have been many efforts to solve the
navigation problem using non-visual sensors [3]. Vision is,
in comparison with other sensors, much more informative.



We observe that many biological species, in particular flying
animals, use mainly their visual sensors for localization and
homing. Moreover, we see that the majority of insects and
arthropods benefit from a wide field of view, which sustains
our omnidirectional camera choice.

A. Bearing-only visual homing

Cartwright and Collett [4] proposed the so-called ’snap-
shot’ model. They suggest that insects fix the locations of
landmarks surrounding a position by storing a snapshot image
of the landmarks taken from that position. Their proposed
algorithm consists of the construction of a home vector,
computed as the average of landmark displacement vectors.
Franz et al. [5] analyzed the computational foundations of
this method and derived its error and convergence properties.
They conclude that every visual homing method based solely
on bearing (azimuth) angles of landmarks, inevitably depends
on basic assumptions such as equal landmark distances,
isotropic landmark distribution or the availability of an ex-
ternal compass reference. For instance, the snapshot-based
method developed by Argyroset al. [6] silently assumes an
isotropic landmark distribution. Unfortunately, becausenone
of these assumptions generally hold in our targeted applica-
tion we search for an alternative approach. Moreover, these
methods return no information about home distance, which
is necessary information for a mobile robot to determine the
appropriate speed and to be able to stop safely at the home
position if needed.

B. Visual landmarks

Crucial in all visual homing methods is the selection of
the landmarks, to find corresponding pixels between the
present image and the target image. Techniques based on
optical flow [5], [7], [8] are used for this, although they
are only suitable for small-baseline egomotion estimation.
Other authors use artificial landmarks, like LEDs [9] or 2D
barcodes [10]. For many applications, like ours, the use of
artificial landmarks is out of the question because of its
serious practical disadvantages. That is why we propose to
use natural landmarks, found using the technique oflocal
region matching. Instead of looking at the image as a whole,
local regions are defined around interest points in the images.
The characterization of these local regions with descriptor
vectors enables the regions to be compared across images.
Because of the built-in invariance against photometric and
geometric changes, correspondences can be found between
images with different lighting and different viewpoints.

Many researchers proposed algorithms for local region
matching. The differences between approaches lie in the way
in which interest points, local image regions, and descriptor
vectors are extracted. An early example is the work of Schmid
and Mohr [11], where geometric invariance was still under
image rotations only. Lowe [12] extended these ideas to scale-
invariance. More general affine invariance has been achieved

in the work of Baumberg [13] and Mikolajczyk & Schmid
[14], that uses an iterative scheme and the combination of
multiple scales, and in the more direct, constructive methods
of Tuytelaars & Van Gool [15], [16], and Mataset al. [17].
Although these methods are capable to find good correspon-
dences, most of them are too slow for use in a mobile robot
algorithm. That is why we spent efforts to speed this up, as
explained in section IV-A.

C. Mapless, sparse maps, dense maps

Ego-motion calculation is part of the problem presented.
Both methods based on dense 3D maps (e.g. [18], [19]) and
map-less appearance-based methods (e.g. [20]) are proposed.
Methods onsparse maps, like ours, are situated between
these two extremes and combine the avantages of both.
Davison [21], for instance, developed a single projective
camera SLAM method which estimates the ego-motion of
the camera by building sparse probabilistic 3D maps with
natural features.

D. Epipolar geometry

For visual homing, the most obvious choice is working via
epipolar geometry estimation (e.g. [16], [22]). Unfortunately,
in many cases this problem is ill conditioned. A workaround
for planar scenes is presented by Sagüés [23], who opted
for the estimation of homographies. Svoboda [24] proved
that motion estimation with omnidirectional images is much
better conditioned compared to perspective cameras. That is
why we chose a method based on omnidirectional epipolar
geometry. Other work in this field is the research of Mariottini
et al. [25], who split the homing procedure in a rotation
phase and a translation phase, which can not be used in our
application because of the non-smooth robot motion.

E. Previous work

In previous work [26], we developed a non-calibrated
omnidirectional homing method based on Extended Kalman
Filters. Visual features are found by wide baseline matching,
and tracked throughout the sequence with a KLT tracker.
During tracking, the 2D position of each feature, and also
the present and target robot positions, are iteratively com-
puted by means of an EKF. Although our tests proved
quite successfull, this method shows two main disadvantages.
Firstly, during tracking, inevitably features are lost dueto
tracking errors and occlusions. This results in a decreasing
accuracy or even totally wrong motion towards the end of
a homing operation. Another disavantage is the sensitivity
of the Kalman filter to deviations in the initial state and the
motion model. Moreover, an important amount of data is not
used, because only bearing data is used and only 2D, not 3D
maps are built.

Our new approach, presented in this paper, avoids these
problems. Based on epipolar geometry calculations using
a calibrated omnidirectional camera, 3D feature maps are



Fig. 2. Flowchart of the proposed algorithm.

built. This enables backprojection of features in the image
to recover features that are lost during tracking. Another
advantage is that the motion is not restricted to a plane.

III. A LGORITHM OVERVIEW

The aim is for a mobile robot to re-execute a path that is
defined by omnidirectional images taken sparsely, say 1 to 3
metres from each other in a typical indoor environment along
that path. As sketched in fig. 1, following such a sparse visual
path boils down to a succession ofvisual homing operations.
One of the advantages of this approach is the fact that no
position errors build up during navigation. Each time the
movement is relative to a new image position and previously
made mapping and localization errors become irrelevant.

Fig. 2 offers an overview of the proposed method. Each
of the visual homing operations is performed in two phases,
an initialization phase and an iterated tracking phase.

First, the image taken at the present pose is compared with
the next path image (the target image). Local feature corre-
spondences between these two images permit calculation of
the epipolar geometry between these images. From that, the
homing vector required to move from the present to the target
location, and the 3D positions of the features are computed.
This initialization phase is described in section IV.

Then, the robot is put into motion in the direction of the
homing vector and an image sequence is recorded. In each
new incoming image the visual features are tracked. Robust-
ness to tracking errors (caused by e.g. occlusions) is achieved
by reprojecting lost features from their 3D positions back in
the image. These tracking results enable the calculation of
the present location and from that the homing vector towards
which the robot is steered. The tracking phase is detailed in
section V.

When the (relative) distance to the target is small enough,
the entire homing procedure is repeated with the next image
on the sparse visual path as target. If the path ends, the robot

can be stopped at a position close to the position where the
last path image was taken.

IV. I NITIALIZATION PHASE

From each position within the reach of a target image, a
visual homing procedure can be started. Our approach first
establishes wide baseline local feature correspondences.That
information is used to compute the epipolar geometry, which
enables us to construct a local map containing the feature
world positions, and to compute the initial homing vector.

A. Wide baseline feature correspondences

Although wide baseline local features are common in
computer vision, only recently, a class offast wide baseline
local features have appeared. We use the combination of two
different kinds of these features, namely a rotation reduced
and color enhanced form of Lowe’sSIFT features [12], and
the invariant column segments we developed [27].

1) Rotation reduced and color enhanced SIFT: David
Lowe presented theScale Invariant Feature Transform [12],
which finds interest points around local peaks in a series of
difference-of-Gaussian (DoG) images. A dominant gradient
orientation and scale factor define an image patch around
each interest point so that a local image descriptor can
be found as a histogram of the gradient directions of the
normalized image patch around the interest point. SIFT
features are invariant to rotation and scaling, and robust to
other transformations.

A reduced form of these SIFT features for use on mobile
robots is proposed by Ledwich and Williams [28]. They used
the fact that rotational invariance is not needed for a camera
fixed on a mobile robot moving in a plane. Elimination of the
rotational normalization and rotational part of the descriptor
yields a somewhat less complex feature extraction and more
robust feature matching performance.

Because the original SIFT algorithm works on grayscale
images, some mismatches occur at similar objects in different
colors. That is why we propose an outlier filtering stage based
on a color descriptor of the feature patch based on global
color moments, introduced by Mindruet al. [29]. We chose
three color descriptors:CRB , CRG andCGB, with

CXY =

∫

XY dΩ
∫

dΩ
∫

X dΩ
∫

Y dΩ
, (1)

whereX, Y ∈ {R, G, B}, i.e. the red, green, and blue color
bands, centralized around their means. After matching, the
correspondences with Euclidean distance between the color
description vectors above a fixed threshold are discarded.

Between the image pair in fig. 3 the original SIFT algo-
rithm finds 13 correct matches. Using this rotation reduced
and color enhanced algorithm, the matching threshold can be
raised so that up to 25 correct matches are found without
including erroneous ones. These numbers, although very
dependent on the complexity of the scene, are typical.



Fig. 3. A pair of 320 × 240 omnidirectional images, superimposed with
color-coded corresponding column segments (radial lines)and SIFT features
(circles with tail).

2) Invariant column segments: In earlier work [27], we
developed wide baseline features which are specially suited
for mobile robot navigation. Taking advantage of the move-
ment constraints of a fixed camera on a robot moving in a
plane (although [27] shows robustness to minor violations
of this constraint), a very simple and fast algorithm can be
carried out. The (dewarped) image is scanned columnwise
and column segment features are defined between two local
maxima of the image gradient. Each column segment is
described by an 11-element vector containing geometrical,
color and intensity information.

Fig. 3 shows the matching results on a pair of omni-
directional images. As seen in these examples, the SIFT
features and the column segments are complementary, which
pleads for the combined use of the two. The computing time
required to extract features in two320 × 240 images and
find correspondences between them is about 800 ms for the
enhanced SIFT features and only 300 ms for the vertical
column segments (on a 800 MHz laptop). Typically 30 to 50
correspondences are found.

Because only the local features are used and not the very
pixel data itself, a path is described very memory efficiently
by solely the local feature data of the sparse path images.

B. Epipolar geometry estimation

Our single-viewpoint omnidirectional camera is composed
of a hyperbolic mirror and a perspective camera. As imaging
model, we use the model proposed by Svoboda and Pa-
jdla [24] (which is less general, but less complicated than
the one by Geyer and Daniilidis [30]). This enables the
computation of the epipolar geometry based on 8 point cor-
respondences. In [31], Svoboda describes a way to robustly
estimate theessential matrix E, when there are outliers in
the correspondence set. Their so-calledgenerate-and-select
algorithm is based on repeatedly solving an overdetermined
system built from the correspondences that have a low
outlierness and evaluating thequality measure of the resulting

Fig. 4. Projection model for a pair of omnidirectional images.

essential matrix. Because our tests with this method did
not yield satisfactory results, we implemented an alternative
method based on the well-known Random Sample Consensus
(RANSAC [32]) paradigm.

The set-up is sketched in fig. 4. One visual feature with
world coordinatesX is projected via pointu on the first
mirror to pointp in the image plane of the first camera. In
the second camera, the mirror point is calledv and the image
plane pointq. For each of the correspondences, the mirror
pointsu andv can be computed as

u = F(K−1p)K−1p + tC , (2)

with tC = [0, 0,−2e]T and

F(x) =
b2(ex1 + a‖x‖)

b2x2

1
− a2x2

2
− a2x2

3

. (3)

In these equationsK is the internal matrix of the camera,
and a, b and e are the parameters of the hyperbolic mirror,
with e =

√
a2 + b2.

If E is the essential matrix, for all correspondences
vT Eu = 0. This yields for each correspondence pair one
linear equation in the coefficients ofE = [eij ]. The essential
matrix can be computed as the solution of the homogeneous
system

Ae = 0, (4)

with e = [e11, e12, e13, e21, . . . , e33] and the rows ofA equal
to ai = [vi1ui1, vi1ui2, vi1uui3, . . . , vi3ui3].

For each random sample of 8 correspondences, anE

matrix can be calculated. This is repeatedly done and for each
E matrix candidate the inliers are counted. A correspondence
is regarded an inlier if the second image pointq lies within
a predefined distance from the epipolarellipse, defined by
the first image pointq. This epipolar ellipseB with equation
xT Bx = 0 is computed as
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with [r, s, t] = Eu = E(F(K−1p)K−1p+tC). Fortunately,
this ellipse becomes a circle when the motion is in one plane,
so that the distance from a point to this shape is easy to
compute.

From the essential matrixE with the maximal number
of inliers the motion between the cameras can be computed
using the SVD based method proposed by Hartley [33]. If
more than oneE-matrix is found with the same maximum
number of inliers, the one is chosen with the smallest quality
measureqE = σ1 − σ2, whereσi is the ith singular value of
the matrixE.

C. Local feature map estimation

In order to start up the succession of tracking iterations,
an estimate of the local map must be made. In our approach
the local feature map contains the 3D world positions of the
visual features, centered at the starting position of the visual
homing operation. These 3D positions are easily computed
by triangulation.

It may arouse suspicion that we only use two images, the
first and the target image, for this triangulation. This has
two reasons. Firstly, these two have the widest baseline and
therefore triangulation is best conditioned. Our wide baseline
matches between these two images are also more plentiful
and less influenced by noise than the tracked features.

V. TRACKING PHASE

When estimates of the homing vector and local map are
found, the robot is put into motion in the direction of that
homing vector. We rely on a lower-level collision detection
and obstacle avoidance algorithm to do this safely [34].
During this drive, images are taken giving information to
update the location of the robot. When close enough to one
target, the movement towards the next target image is started.
This yields a smooth trajectory along a sparsely defined
visual path.

A. Feature tracking

The corresponding features found between the first image
and the target image in the previous step, also have to
be found in the incoming images during driving. This can
be done very reliably performing every time wide baseline
matching with the first or target image, or both. Although
recent methods are relatively fast (about0.8s for a pair of
640× 480 images, see [27]), this is still too time-consuming
for a driving robot.

Because the incoming images are part of a smooth con-
tinuous sequence, a better solution istracking. In the image
sequence, visual features move only a little from one image
to the next, which enables to find the new feature position in
a small search space.

A widely used tracker is the KLT tracker of Kanade, Lucas,
Shi, and Tomasi [35]. KLT starts by identifying interest points
(corners), which then are tracked in a series of images. The

basic principle of KLT is that the definition of corners to be
tracked is exactly the one that guarantees optimal tracking.
A point is selected if the matrix

[

g2

x gxgy

gxgy g2

y

]

, (6)

containing the partial derivativesgx and gy of the image
intensity function over anN × N neighborhood, has large
eigenvalues. Tracking is then based on a Newton-Raphson
style minimization procedure using a purely translational
model. This algorithm works surprisingly fast: we were able
to track 100 feature points at 10 frames per second in
320 × 240 images on a 800 MHz laptop.

Because the well trackable points are not necessarily
coinciding with the center points of the wide baseline features
to be tracked, the best trackable point in a small window
around such a center point is selected. In the assumption of
local planarity we can always find back the corresponding
point in the target image via the relative reference system
offered by the wide baseline feature.

B. Recovering lost features

The main advantage of working with this calibrated system
is that we can recover features that were lost during tracking.
This avoids the problem of losing all features by the end of
the homing maneuver, a weakness of our previous approach
[26].

In the initialization phase, all features are described by
an intensity histogram, so that they can be recognized after
being lost during tracking. Each time a feature is successfully
tracked, this histogram is updated.

When tracking, some features are lost due to temporal
invisibility because of e.g. occlusion. Because our local map
contains the 3D positions of each feature, and the last robot
position in that map is known, we can reproject the 3D feature
in the image. Svoboda shows that the world pointXC (i.e. the
pointX expressed in the camera reference frame) is projected
on pointp in the image:

p =
K

2e
(λXC − tC), (7)

whereinλ is the largest solution of

λ =
b2(−e)XC3 ± a‖XC‖

b2XC
2

3
− a2XC

2

1
− a2XC

2

2

. (8)

Based on the histogram descriptor, all trackable features
in a window around the reprojected pointp are compared to
the original feature. When the histogram distance is under a
fixed threshold, the feature is found back and tracked further
in the next steps.



C. Motion computation

When in a new image the feature positions are computed
by tracking or backprojection, the camera position (and thus
the robot position) in the general coordinate system can be
found based on these measurements.

It is shown that the position of a camera can be computed
when for three points the 3D positions and the image
coordinates are known. This problem is know as thethree
point perspective pose estimation problem. An overview of
the proposed algorithms to solve it is given by [36]. We chose
the method of Grunert, and adapted it for our omnidirectional
case. The required input data, unit vectors pointing from
the center of perspectivity to the observed points, is easily
computed by normalizing the corresponding mirror pointsv.

Also in this part of the algorithm we use RANSAC to
obtain a robust estimation of the camera position. Repeatedly
the inliers belonging to the motion computed on a three-point
sample are counted, and the motion with the greatest number
of inliers is kept.

D. Robot motion

In subsection IV-B is explained how the position and
orientation of the target can be extracted from the computed
epipolar geometry. Together with the present pose results of
the last subsection, a homing vector can easily be computed.
This command is communicated to the locomotion subsys-
tem. When the homing is towards the last image in a path,
also the relative distance and the target orientation w.r.t. the
present orientation is given, so that the locomotion subsystem
can steer the robot to a halt at the desired position. This is
needed for e.g. docking at a table.

VI. EXPERIMENTAL RESULTS

A path was defined by four omnidirectional images taken
at places about 2 metres apart along the path. From a starting
position in the neighborhood of the first image, the visual
path following algorithm was executed.

Typical results of one visual homing step of our algo-
rithm are presented in fig. 7 and 8. We prepared a demo
video about this experiment which is downloadable via
http://www.esat.kuleuven.be/∼tgoedeme.

A. Test platform

We have implemented the proposed algorithm, using our
modified wheelchair ”Sharioto”. It is a standard electric
wheelchair that has been equipped with an omnidirectional
vision sensor (consisting of a Sony firewire color camera and
a hyperbolic mirror). The image processing is performed on
a 1 GHz laptop. As additional sensors for obstacle detection,
16 ultrasound sensors and a Lidar are added. A second laptop
with a 840 MHz processor reads these sensors, receives
visual homing vector commands, computes the necessary
manoeuvres, and drives the motors via a CAN-bus. More
information can also be found in [37] and [34].
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Fig. 5. Homing direction error [rad] (left), and home orientation error [rad]
(right) w.r.t. distance [%]. The goal location lies at 100%
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Fig. 6. Homing vectors from 1-meter-grid positions.

B. Initialization phase

During the initialization phase of one visual homing step,
correspondences between the present and target images are
found and the epipolar geometry is computed. This is shown
in fig. 7.

We tested thouroughly the accuracy of the homing vector
computed from the epipolar geometry. Fig. VI-B plots the
angle error of the homing direction and the home orientation
for different distances between first and target position. We
see that the error decreases with decreasing distance to the
goal. However, when the baseline becomes too small, the
error goes up again due to ill-conditioning.

For an other experiment, we took images with the robot
positioned at a grid with a cell size of one meter. The
resulting home vectors towards one of these images (taken at
(6,3)) are shown in fig. 6. This proves the fact that even if the
images are situated more than 6 metres apart the algorithm
works thanks to the use ofwide baseline correspondences.

C. Tracking phase

We present a typical experiment in fig. 8. During the
motion, the top of the camera system was tracked in a video
sequence from a fixed camera. This video sequence, along
with the homography computed from some images taken
with reference positions, permits calculation of metricalrobot
ground truth data.

Repeated similar experiments showed an average homing
accuracy of 11 cm, with a standard deviation of 5 cm.

D. Timing

The algorithm runs surprisingly fast on the rather slow
hardware we used: the initialization for a new target lasts
only 958 ms, while afterwards every 387 ms a new homing
vector is computed.



Fig. 7. Results of the initialization phase. Top row: target, bottom row: start. From left to right, the robot position, omnidirectional image, visual
correspondences and epipolar geometry are shown.

VII. C ONCLUSION

In this work, we developed a novel approach to visual path
following as a series of visual homing operations on path
images. Image correspondences are found using advanced
fast wide baseline feature matching techniques, which can
cope with big viewpoint differences. This permits the use
of only a few path images, which leads to the concept of a
memory efficient sparse visual path.

Based on robustly estimated omnidirectional epipolar ge-
ometry a local 3D map of the environment is built, which
holds only the feature world coordinates (a sparse 3D map).
This enables the recovery of features which are lost during
tracking by backprojecting them in the image. In this sense
an occlusion-robust feature tracker is built.

Our experiments show the feasibility and robustness of this
approach.
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