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Abstract: In this paper, we present a method for fast and robust object recognition. As an example, the method is
applied to traffic sign recognition from a forward-looking camera in a car. To facilitate and optimise the
implementation of this algorithm on an embedded platform containing parallel hardware, we developed a
voting scheme for constellations of visual words, i.e. clustered local features (SURF in this case). On top of
easy implementation and robust and fast performance, even with large databases, an extra advantage is that
this method can handle multiple identical visual features in one model.

1 INTRODUCTION

One of the key upcoming technologies making
cars safer to drive with is automatic recognition of
road signs. An on-board camera installed in the car
observes the road ahead. Intelligent computer vision
algorithms are being developed that enable the detec-
tion and recognition of various objects in these im-
ages: traffic lane markings, pedestrians, obstacles,
. . . Here, we focus on the recognition of traffic signs.
Based on recognition results, certain alerts can be sent
to the driver, e.g. a warning if the current speed of the
car is higher than the speed limit declared in the traffic
sign.

Because that the appearance of a certain traffic
sign is fixed (even described by law), the detection
is quite a bit easier than e.g. the detection of pedestri-
ans. Nevertheless, in real-life experiments substantial
appearance variation is measured, mainly due to dif-
ferent light conditions, viewpoint changes, ageing of
the traffic sign, deformations and even vandalism. We
can conclude that a robust method is needed.

The remainder of this text is organised as follows.
Section 2 gives an overview of relevant related work.
In section 3, our algorithm is described. Somereal
life experiments are presented in section 4. The paper
ends with a conclusion in section 5.

2 RELATED WORK

Real-time road sign recognition has been a re-
search topic for many years. This problem is often ad-
dressed in a two-stage procedure involving detection
and classification. In contrast, our solution is an all-
in-one operation which more likely leads to a faster
algorithm. An other difference with related work in
the field is that our solution does not rely on template
matching (Rosenfeld and Kak, 1976), colour (Zhu
and Liu, 2006), the detection of geometrical ba-
sis shapes (Garcia-Garrido et al., 2006), or canny
edges (Sandoval et al., 2000). Moreover, our solu-
tion is not limited to certain traffic sign shapes (Bal-
lerini et al., 2005). We use clusters of local image
features (SURF) to robustly describe the appearance
of the traffic sign.

A few years ago, a major revolution in the object
recognition field was the appearance of the idea of
local image features (Tuytelaars et al., 1999; Lowe,
1999). Indeed, looking at local parts instead of the
entire pattern to be recognised has the inherent ad-
vantage of robustness to partial occlusions. In both
template and query image, local regions are extracted
around interest points, each described by a descrip-
tor vector for comparison. The development of ro-
bust local feature descriptors, like e.g. Mindru’s gen-
eralised colour moment based ones (Mindru et al.,



1999), added robustness to illumination and changes
in viewpoint.

Many researchers proposed algorithms for lo-
cal region matching. The differences between ap-
proaches lie in the way in which interest points, local
image regions, and descriptor vectors are extracted.
An early example is the work of Schmid and Mohr
(Schmid et al., 1997), where geometric invariance
was still under image rotations only. Scaling was han-
dled by using circular regions of several sizes. Lowe
et al. (Lowe, 1999) extended these ideas to real scale-
invariance. More general affine invariance has been
achieved in the work of Baumberg (Baumberg, 2000),
that uses an iterative scheme and the combination of
multiple scales, and in the more direct, constructive
methods of Tuytelaars & Van Gool (Tuytelaars et al.,
1999; Tuytelaars and Gool, 2000), Mataset al.(Matas
et al., 2002), and Mikolajczyk & Schmid (Mikola-
jczyk and Schmid, 2002). Although these methods
are capable to find very qualitative correspondences,
most of them are too slow for use in a real-time appli-
cation as the one we envision here. Moreover, none
of these methods are especially suited for the imple-
mentation on an embedded computing system, where
both memory and computing power must be as low as
possible to ensure reliable operation at the lowest cost
possible.

The classic recognition scheme with local fea-
tures, presented in (Lowe, 1999; Tuytelaars and Gool,
2000), and used in many applications such as in our
previous work on robot navigation (Goedemé et al.,
2005; Goedemé et al., 2006), is based on finding
one-on-one matches. Between the query image and
a model image of the object to be recognised, bijec-
tive matches are found. For each local feature of the
one image, the most similar feature in the other is se-
lected.

This scheme contains a fundamental drawback,
namely its disability to detect matches when multiple
identical features are present in an image. In that case,
no guarantee can be given that the most similar fea-
ture is the correct correspondence. Such pattern rep-
etitions are quite common in the real world, though,
especially in man-made environments. To reduce the
number of incorrect matches due to this phenomenon,
in classic matching techniques a criterion is used such
as comparing the distance to the most and the sec-
ond most similar feature (Lowe, 1999). Of course,
this practice throws away a lot of good matches in the
presence of pattern repetitions.

In this paper, we present a possible solution to
this problem by making use of thevisual wordcon-
cept. Visual words are introduced (Sivic and Zisser-
man, 2003; Li and Perona, 2005; Zhang et al., 2005)

in the context of object classification. Local features
are grouped into a large number of clusters with those
with similar descriptors assigned into the same clus-
ter. By treating each cluster as avisual word that
represents the specic local pattern shared by the key-
points in that cluster, we have a visual word vocabu-
lary describing all kinds of such local image patterns.
With its local features mapped into visual words, an
image can be represented as abag of visual words,
as a vector containing the (weighted) count of each
visual word in that image, which is used as feature
vector in the classication task.

In contrast to the in categorisation often used
bag-of-words concept, in this paper we present the
constellation-of-wordsmodel. The main difference is
that not only the presence of a number of visual words
is tested, but also their relative positions.

3 ALGORITHM

Fig. 1 gives an overview of the algorithm. It con-
sists of two phases, namely the model construction
phase (upper row) and the matching phase (bottom
row).

First, in a model photograph(a), local features are
extracted(b). Then, a vocabulary of visual words is
formed by clustering these features based on their de-
scriptor. The corresponding visual words on the im-
age(c) are used to form the model description. The
relative location of the image centre (theanchor) is
stored for each visual word instance(d).

The bottom row depicts the matching procedure.
In a query image, local features are extracted(e).
Matching with the vocabulary yields a set of visual
words ( f ). For each visual word in the model de-
scription, a vote is cast at the relative location of the
anchor location(g). The location of the object can
be found based on these votes as local maxima in a
voting Hough space(h). Each of the following sub-
sections describes one step of this algorithm in detail.

3.1 Local Feature Extraction

We chose to use SURF as local feature detector, in-
stead of the often used SIFT detector. SURF (Bay
et al., 2006; Fasel and Gool, 2007) is developed to be
substantially faster, but at least as performant as SIFT.

3.1.1 Interest Point Detector

In contrast to SIFT (Lowe, 1999), which approxi-
mates Laplacian of Gaussian (LoG) with Difference



Figure 1: Overview of the algorithm. Top row (model building): (a) model photo,(b) extracted local features,(c) features
expressed as visual words from the vocabulary,(d) model description with relative anchor positions for each visual word.
Bottom row (matching):(e) query image with extracted features,( f ) visual words from the vocabulary,(g) anchor position
voting based on relative anchor position,(h) Hough voting space.

Figure 2: Left: two filters based on Gaussian derivatives.
Right: their approximation using box filters.

of Gaussians (DoG), SURF approximates second or-
der Gaussian derivatives with box filters, see fig. 2.
Image convolutions with these box filters can be com-
puted rapidly by using integral images as defined in
(Viola and Jones, 2001). Interest points are localised
in scale and image space by applying a non-maximum
suppression in a 3× 3 neighbourhood. Finally, the
found maxima of the determinant of the approximated
Hessian matrix are interpolated in scale and image
space.

3.1.2 Descriptor

In a first step, SURF constructs a circular region
around the detected interest points in order to assign a
unique orientation to the former and thus gain invari-
ance to image rotations. The orientation is computed
using Haar wavelet responses in both x and y direction
as shown in the middle of fig. 3. The Haar wavelets
can be easily computed via integral images, similar

Figure 3: Middle: Haar wavelets. Left and right: examples
of extracted SURF features.

to the Gaussian second order approximated box fil-
ters. Once the Haar wavelet responses are computed,
they are weighted with a Gaussian centred at the in-
terest points. In a next step the dominant orientation
is estimated by summing the horizontal and vertical
wavelet responses within a rotating wedge, covering
an angle ofπ3 in the wavelet response space. The re-
sulting maximum is then chosen to describe the ori-
entation of the interest point descriptor. In a second
step, the SURF descriptors are constructed by extract-
ing square regions around the interest points. These
are oriented in the directions assigned in the previ-
ous step. Some example windows are shown on the
right hand side of fig. 3. The windows are split up
in 4× 4 sub-regions in order to retain some spatial
information. In each sub-region, Haar wavelets are
extracted at regularly spaced sample points. In order



Figure 4: Illustrating the SURF descriptor.

to increase robustness to geometric deformations and
localisation errors, the responses of the Haar wavelets
are weighted with a Gaussian, centred at the interest
point. Finally, the wavelet responses in horizontaldx
and vertical directionsdy are summed up over each
sub-region. Furthermore, the absolute values|dx| and
|dy| are summed in order to obtain information about
the polarity of the image intensity changes. The re-
sulting descriptor vector for all 4×4 sub-regions is of
length 64. See fig. 4 for an illustration of the SURF
descriptor for three different image intensity patterns.

More details about SURF can be found in (Bay
et al., 2006) and (Fasel and Gool, 2007).

3.1.3 Visual Words

As explained before, the next step is forming a vo-
cabulary of visual words. This is accomplished by
clustering a big set of extracted SURF features. It is
important to build this vocabulary using a large num-
ber of features, in order to be representative for all
images to be processed.

The clustering itself is easily carried out with the
k-means algorithm. Distances between features are
computed as the Euclidean distance between the cor-
responding SURF descriptors. Keep in mind that this
model-building phase can be processed off-line, the
real-time behaviour is only needed in the matching
step.

In the fictive ladybug example of fig. 1, each vi-
sual word is symbolically presented as a letter. It can
be seen that the vocabulary consists of a file linking
each visual word symbol with a mean descriptor vec-
tor of the corresponding cluster.

3.2 Model Construction

All features found on a model image are matched with
the visual word vocabulary, as shown in fig. 1(c). In
addition to the popular bag-of-words models, which
consist of a set of visual words, we add the relative
constellation of all visual words to the model descrip-
tion.

Figure 5: The position of the anchor point is stored in the
model as polar coordinates relative to the visual word scale
and orientation.

Each line in the model description file consists of
the symbolic name of a visual word, and the rela-
tive coordinates(rrel ,θrel) to the anchor point of the
model item. As anchor point, we chose for instance
the centre of the model picture. These coordinates
are expressed as polar coordinates, relative to the in-
dividual axis frame of the visual word. Indeed, each
visual word in the model photograph has a scale and
an orientation because it is extracted as a SURF fea-
ture. Fig. 5 illustrates this. The resulting model is
a very compact description of the appearance of the
model photo. Many of these models, based on the
same visual word vocabulary, can be saved in a com-
pact database. In our traffic sign recognition applica-
tion, we build a database of all different traffic signs
to be recognised.

3.3 Matching

This part of the algorithm is time-critical. We are
spending lots of efforts in speeding up the matching
procedure, in order to be able to implement it on an
embedded system.

The first operation carried out on incoming images
is extracting SURF features, exactly as described in
section 3.1. After local feature extraction, matching
is performed with the visual words in the vocabulary.
We used Mount’s ANN (Approximate Nearest Neigh-
bour) (Arya et al., 1998) algorithm for this, which is
very performant. As seen in fig. 1( f ), some of the vi-
sual words of the object are recognised, amidst other
visual words.

3.3.1 Anchor Location Voting

Because each SURF feature has a certain scale and
rotation, we can reconstruct the anchor pixel location
by using the feature-relative polar coordinates of the
object anchor. For each instance in the object model



description, this yields a vote for a certain anchor lo-
cation. In fig. 1(g), this is depicted by the black lines
with a black dot at the computed anchor location.

Ideally, all these locations would coincide at the
correct object centre. Unfortunately, this is not the
case due to mismatches and noise. Moreover, if there
are two identical visual words in the model descrip-
tion of an object (as in the ladybug example for words
A, C andD), each detected visual word of that kind in
the query image will cast to different anchor location
votes, of which only one can be correct.

3.3.2 Object Detection

For all different models in the database, anchor lo-
cation votes can be quickly computed. Next task is
to decide where a certain object is detected. Because
a certain object can be present more than once in the
query image, it is clear that a simple average of the an-
chor position votes is not a sufficient technique, even
if robust estimators like RANSAC are used to elimi-
nate outliers. Therefore, we construct aHough space,
a matrix which is initiated at zero and incremented at
each anchor location vote, fig. 1(h). The local max-
ima of the resulting Hough matrix are computed and
interpreted as detected object positions.

4 EXPERIMENTS

For preliminary experiments, we implemented
this algorithm using Octave and an executable of the
SURF extractor. Fig. 7 shows some typical results
of different phases of the algorithm. The test im-
ages were acquired by taking 640×480 digital pho-
tographs at random natural road scenes.

In fig. 6, a number of model photographs are
shown. Each of such images, having a resolution
of about 100× 100 pixels, yielded a thourough de-
scription of the traffic sign design in a model descrip-
tion containing on the average 52 features, what boils
down to a model file size of only 3.2 KB.

Fig. 7 shows a typical output during the detection
stage. In a query image, local features are extracted.
These are matched with the visual word vocabulary.
Then, for each traffic sign model, for the matching vi-
sual words the relative anchor position is computed.
This stage is visualised in the figure. As can be no-
ticed, in the centre of the traffic sign, many anchor
votes are coinciding.

The traffic signs were detected by finding local
maxima in the Hough space, for this example visu-
alised in fig. 8. We performed experiments on 35
query images and were able to detect 82% of the

Figure 6: Some model photos from the traffic sign library.

trained types. Detection failures were mostly due to
the fact that the signs were too far away and hence too
small, and severe occlusions by other objects.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented an algorithm for object
detection based on the concept of visual word constel-
lation voting. The preliminary experiments proved
the performance of this approach. The method has
the advantages that it is computing power and mem-
ory efficient and that it can handle pattern repetitions
in the models.

We applied this method successfully on automatic
traffic sign recognition.

As told before, our aim in this work is an em-
bedded implementation of this algorithm. The Oc-
tave implementation presented here is only a first step
towards that. But we believe the proposed approach
has a lot of advantages. The SURF extraction phase
can mostly be migrated to a parallel hardware imple-
mentation on FPGA. Visual word matching is sped
up using the ANN-libraries, making use of Kd-trees.
Of course a large part of the memory is used by the
(mostly sparse) hough space. A better description of
the voting space will lead to a great memory improve-
ment of the algorithm.
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